Arthur Holly Compton (September 10, 1892 – March 15, 1962) was an American experimental physicist who shared the 1927 Nobel Prize in Physics with C. T. R. Wilson for his discovery of the Compton effect, which demonstrated the particle physics nature of electromagnetic radiation. It was a sensational discovery at the time: the wave nature of light had been well-demonstrated, but the idea that light had both wave and particle properties was not easily accepted.
Compton is also known for his leadership over the Metallurgical Laboratory at the University of Chicago during the Manhattan Project, and served as chancellor of Washington University in St. Louis from 1945 to 1953.
In 1919, Compton was awarded one of the first two National Research Council Fellowships that allowed students to study abroad. He chose to go to the University of Cambridge's Cavendish Laboratory in England, where he studied the scattering and absorption of . Further research along these lines led to the discovery of the Compton effect.
Compton used X-rays to investigate ferromagnetism, concluding that it was a result of the alignment of , and studied , discovering that they were made principally of positively charged particles.
During World War II, Compton was a key figure in the Manhattan Project that developed the first . His reports were important in launching the project. In 1942, he became a member of the Executive Committee, and then head of the "X" projects overseeing the Metallurgical Laboratory, with responsibility for producing to convert uranium into plutonium, finding ways to separate the plutonium from the uranium and to design an atomic bomb. Compton oversaw Enrico Fermi's creation of Chicago Pile-1, the first nuclear reactor, which went critical on December 2, 1942. The Metallurgical Laboratory was also responsible for the design and operation of the X-10 Graphite Reactor at Oak Ridge, Tennessee. Plutonium began being produced in the Hanford Site reactors in 1945.
After the war, Compton became chancellor of Washington University in St. Louis. During his tenure, the university formally desegregated its undergraduate divisions, named its first female full professor, and enrolled a record number of students after wartime veterans returned to the United States.
Compton was initially interested in astronomy, and took a photograph of Halley's Comet in 1910. Around 1913, he described an experiment where an examination of the motion of water in a circular tube demonstrated the rotation of the earth, a device now known as the Compton generator. That year, he graduated from Wooster with a B.S. and entered Princeton, where he received his M.A. in 1914. Compton then studied for his Ph.D. in physics under the supervision of Hereward L. Cooke, writing his thesis on The Intensity of X-Ray Reflection, and the Distribution of the Electrons in Atoms.
When Arthur Compton earned his Ph.D. in 1916, he, Karl, and Wilson became the first group of three brothers to earn PhDs from Princeton. Later, they would become the first such trio to simultaneously head American colleges. Their sister, Mary, married a missionary, C. Herbert Rice, who became the Principal of Forman Christian College in Lahore. In June 1916, Compton married Betty Charity McCloskey, a Wooster classmate and fellow graduate. They had two sons, Arthur Alan Compton and John Joseph Compton.
In 1916, Compton became a physics instructor at the University of Minnesota. In 1917, he became a research engineer at the Westinghouse Lamp Company in Pittsburgh, where he worked on the development of the sodium-vapor lamp. During World War I, he developed aircraft instrumentation for the Signal Corps.
In 1919, Compton was awarded one of the first two National Research Council Fellowships that allowed students to study abroad. He chose to go to the University of Cambridge's Cavendish Laboratory in England. Working with George Paget Thomson, the son of J. J. Thomson, Compton studied the scattering and absorption of gamma rays. He observed that the scattered rays were more easily absorbed than the original source. Compton was greatly impressed by the Cavendish scientists, especially Ernest Rutherford, Charles Galton Darwin and Arthur Eddington, and he ultimately named his second son after J. J. Thomson.
From 1926 to 1927, he taught at the department of chemistry of the University of the Punjab where he was a Guggenheim Fellow.
For a time, Compton was a deacon at a Baptist church. "Science can have no quarrel", he said, "with a religion which postulates a God to whom men are as His children."
In 1923, Compton published a paper in the Physical Review that explained the X-ray shift by attributing particle-like momentum to , something Einstein had invoked for his 1905 Nobel Prize–winning explanation of the photo-electric effect. First postulated by Max Planck in 1900, these were conceptualized as elements of light "quantized" by containing a specific amount of energy depending only on the frequency of the light. In his paper, Compton derived the mathematical relationship between the shift in wavelength and the scattering angle of the X-rays by assuming that each scattered X-ray photon interacted with only one electron. His paper concludes by reporting on experiments that verified his derived relation:
The quantity is known as the Compton wavelength of the electron; it is equal to . The wavelength shift lies between zero (for ) and twice the Compton wavelength of the electron (for ). He found that some X-rays experienced no wavelength shift despite being scattered through large angles; in each of these cases the photon failed to eject an electron. Thus the magnitude of the shift is related not to the Compton wavelength of the electron, but to the Compton wavelength of the entire atom, which can be upwards of 10,000 times smaller.
"When I presented my results at a meeting of the American Physical Society in 1923", Compton later recalled, "it initiated the most hotly contested scientific controversy that I have ever known." The wave nature of light had been well demonstrated, and the idea that it could have a dual nature was not easily accepted. It was particularly telling that diffraction in a crystal lattice could only be explained with reference to its wave nature. It earned Compton the Nobel Prize in Physics in 1927. Compton and Alfred W. Simon developed the method for observing at the same instant individual scattered X-ray photons and the recoil . In Germany, Walther Bothe and Hans Geiger independently developed a similar method.
Compton investigated the effect of X-rays on the sodium and chlorine nuclei in salt. He used X-rays to investigate ferromagnetism, concluding that it was a result of the alignment of . In 1926, he became a consultant for the Lamp Department at General Electric. In 1934, he returned to England as Eastman visiting professor at Oxford University. While there, General Electric asked him to report on activities at General Electric Company plc's research laboratory at Wembley. Compton was intrigued by the possibilities of the research there into . His report prompted a research program in America that developed it.
Compton's first book, X-Rays and Electrons, was published in 1926. In it he showed how to calculate the densities of diffracting materials from their X-ray diffraction patterns. He revised his book with the help of Samuel K. Allison to produce X-Rays in Theory and Experiment (1935). This work remained a standard reference for the next three decades.
The final draft of Compton's November report made no mention of using plutonium, but after discussing the latest research with Ernest Lawrence, Compton became convinced that a plutonium bomb was also feasible. In December, Compton was placed in charge of the plutonium project. He hoped to achieve a controlled chain reaction by January 1943, and to have a bomb by January 1945. To tackle the problem, he had the research groups working on plutonium and nuclear reactor design at Columbia University, Princeton University and the University of California, Berkeley, concentrated together as the Metallurgical Laboratory in Chicago. Its objectives were to produce reactors to convert uranium to plutonium, to find ways to chemically separate the plutonium from the uranium, and to design and build an atomic bomb.
In June 1942, the United States Army Corps of Engineers assumed control of the nuclear weapons program and Compton's Metallurgical Laboratory became part of the Manhattan Project. That month, Compton gave Robert Oppenheimer responsibility for bomb design. It fell to Compton to decide which of the different types of reactor designs that the Metallurgical Laboratory scientists had devised should be pursued, even though a successful reactor had not yet been built.
When labor disputes delayed construction of the Metallurgical Laboratory's new home in the Argonne Forest preserve, Compton decided to build Chicago Pile-1, the first nuclear reactor, under the stands at Stagg Field. Under Fermi's direction, it went critical on December 2, 1942. Compton arranged for Mallinckrodt to undertake the purification of uranium ore, and with DuPont to build the plutonium semi-works at Oak Ridge, Tennessee.
A major crisis for the plutonium program occurred in July 1943, when Emilio Segrè's group confirmed that plutonium created in the X-10 Graphite Reactor at Oak Ridge contained high levels of plutonium-240. Its spontaneous fission ruled out the use of plutonium in a gun-type nuclear weapon. Oppenheimer's Los Alamos Laboratory met the challenge by designing and building an implosion-type nuclear weapon.
Compton was at the Hanford site in September 1944 to watch the first reactor being brought online. The first batch of uranium slugs was fed into Reactor B at Hanford in November 1944, and shipments of plutonium to Los Alamos began in February 1945. Throughout the war, Compton would remain a prominent scientific adviser and administrator. In 1945, he served, along with Lawrence, Oppenheimer, and Fermi, on the Scientific Panel that recommended military use of the atomic bomb against Japan. He was awarded the Medal for Merit for his services to the Manhattan Project.
Compton retired as chancellor in 1954, but remained on the faculty as Distinguished Service Professor of Natural Philosophy until his retirement from the full-time faculty in 1961. In retirement he wrote Atomic Quest, a personal account of his role in the Manhattan Project, which was published in 1956.
Reacting to criticisms that his ideas made chance the direct cause of people's actions, Compton clarified the two-stage nature of his idea in an Atlantic Monthly article in 1955. First there is a range of random possible events, then one adds a determining factor in the act of choice.
Compton lectured on a "Man's Place in God's World" at Yale University, Western Theological Seminary and the University of Michigan in 1934–35. The lectures formed the basis of his book The Freedom of Man. His chapter "Death, or Life Eternal?" argued for Christian immortality and quoted verses from the Bible.Eikner, Allen V. (1980). Religious Perspectives and Problems An Introduction to the Philosophy of Religion. University Press of America. pp. 194–203. From 1948 to 1962, Compton was an elder of the Second Presbyterian Church in St. Louis. In his later years, he co-authored the book Man's Destiny in Eternity. Compton set Jesus as the center of his faith in God's eternal plan. He once commented that he could see Jesus' spirit at work in the world as an aspect of God alive in men and women.
Compton received many awards in his lifetime, including the Nobel Prize in Physics in 1927, the Matteucci Medal in 1930, and the Hughes Medal and the Franklin Medal in 1940. He was elected to the American Philosophical Society in 1925, the National Academy of Sciences in 1927, and the American Academy of Arts and Sciences in 1928. He is commemorated in various ways. Compton crater on the Moon is co-named for Compton and his brother, Karl. The physics research building at Washington University in St Louis is named in his honor, as is the university's top fellowship for undergraduate students studying math, physics, or planetary science. Compton invented a more gentle, elongated, and ramped version of the speed bump called the "Holly hump", many of which are on the roads of the Washington University campus. The University of Chicago remembered Compton and his achievements by dedicating the Arthur H. Compton House in his honor. It is now listed as a National Historic Landmark. Compton also has a star on the St. Louis Walk of Fame. NASA's Compton Gamma Ray Observatory was named in honor of Compton. The Compton effect is central to the gamma ray detection instruments aboard the observatory.
|
|